I don't know how much this solution will be once support for a dynamic load (e.g. from the REPL) will have to be implemented, because you'll have to keep an index of the last global variables created across different compilation sessions. With threads it gets even more complicated (mutex on the index?). With symbols it would be simpler to implement a dynamic load or definition of a global var from the REPL. The price paid is a slightly slower access to global variables, because 2 references to memory are necessary for every refrence to a global var. Global variables lookups are still O(1) though, e.g: sym->binding for read access and sym->binding = value for write access.
> the last global variables created across different compilation sessions
I don't understand this part. I was proposing that 'eval would be an interpreter, not a compiler. My intentions was that compiled code would be statically generated (the way it's done now), so 'eval cannot possibly compile code. It would be a compiled interpreter of Arc. arc2c is a static compiler, so 'eval won't add ever add compiled code; the best it can do is create a 'interpreted-fn object that contains an interpreted function's code (as a list) and the enclosing interpreted environment
So a dynamic load would just interpret the expressions in the file being loaded:
(set load
(fn (f)
(w/infile s f
(whilet e (read s)
(eval e)))))
'eval would be able to access the global variable table indirectly via the symbols and %symeval/%symset.
Basically, 'eval would be compiled to something like this:
(set eval
(fn (e (o env nil))
(if (isa e 'symbol)
(if env (lookup-environment env e)
(%symeval e))
(...))))
Also: if the compiled code doesn't reference it, it won't be in the GLOBAL() array. The reason is simple: the compiled code won't reference it, ever. If 'globalvar isn't in GLOBAL(), then it does not exist in the compiled code. So it doesn't matter that it's not in the GLOBAL() array - the compiled code never referenced that global, so it won't ever use an index into the GLOBAL() array to refer to it. The interpreted code might, but that's why we have an indirect reference connected to the symeval.
Also, when I say O(1), I mean O(1) with the number one, as in only one layer of indirection (an index within a table). If global bindings are kept with the symbol only, then all global accesses - even precompiled ones - need (1) to find the symbol and (2) get the binding, for a total of O(2).
In other words: 'compile-file compiles, but it creates a new executable which is never connected to the process that ran 'compile-file. 'eval just interprets, and if the interpreted code mutates a global of the program, then that global gets mutated for real, in the program (what are you doing using 'eval on untrusted coe anyway). But if the interpreted code mutates a global that is never used in the program, it just creates a new global variable, one which is never referenced by the program (by definition, because the program never used it).
I thought eval compiled code, loaded it and then executed it. I've been mistaken. With the compiled code completely static then your strategy is better than assigning values to symbols.