I rewrote the type system for arc a while ago, so that it would support inheritance and generally not get in the way, but unfortunately I haven't had the time to push it yet. If you're interested, I could try to get that up some time soon.
Well, I took a break from wondering what I wanted, and I did something about it instead, by cobbling together several snippets I'd already posted. So I'm going to push soon myself, and realistically I think I'll be more pleased with what I have than what you have. For instance, Mine is already well-integrated with my multival system, and it doesn't change any Arc internals, which would complicate Lathe's compatibility claims.
On the other hand, and at this moment it's really clear to me that implementing generic doppelgangers of arc.arc functions is a bummer when it comes to naming, and modifying the Arc internals to be more generic, like you've done (right?), could really make a difference. Maybe in places like that, your approach and my approach could form an especially potent combination.
I finally pushed this to Lathe. It's in the new arc/orc/ folder as two files, orc.orc and oiter.arc. The core is orc.arc, and oiter.arc is just a set of standard iteration utilities like 'oeach and 'opos which can be extended to support new datatypes.
The main feature of orc.arc is the 'ontype definition form, which makes it easy to define rules that dispatch on the type of the first argument. These rules are just like any other rules (as demonstrated in Lathe's arc/examples/multirule-demo.arc), but orc.arc also installs a preference rule that automatically prioritizes 'ontype rules based on an inheritance table.
It was easy to define 'ontype, so I think it should be easy enough to define variants of 'ontype that handle multiple dispatch or dispatching on things other than type (like value [0! = 1], dimension [max { 2 } = 2], or number of arguments [atan( 3, 4 ) = atan( 3/4 )]). If they all boil down to the same kinds of rules, it should also be possible to use multiple styles of dispatch for the same method, resolving any ambiguities with explicit preference rules. So even though 'ontype itself may be limited to single dispatch and dispatching on type, it's part of a system that isn't.
Still, I'm not particularly sure orc.arc is that helpful, 'cause I don't even know what I'd use it for. I think I'll only discover its shortcomings and its best applications once I try using it to help port some of my Groovy code to Arc.
And yes, I did modify arc's internals to be more generic. Basically, I replaced the vectors pg used for typing with lists and added the ability to have multiple types in the list at once. Since 'type returns the whole list, and 'coerce looks for conversion based on each element in order, we get a simple form of inheritance and polymorphism, and objects can be typed without losing the option of being treated like their parents.